Explainable models and why we need them

Kate Saenko Boston University

Why do we need explainable models?

CNNs learn to predict pneumonia by detecting hospital which took the image

- Study on detecting pneumonia using 158,323 chest radiographs
- CNNs robustly identified hospital system and department within a hospital
- CNN has learned to detect a metal token that radiology technicians place on the patient in the corner of the image

Variable generalization performance of a deep learning model to detect pneumonia in chest radiographs: A cross-sectional study. Zech JR1, Badgeley MA2, Liu M2, Costa AB3, Titano JJ4, Oermann EK3. https://www.ncbi.nlm.nih.gov/pubmed/30399157

Can we explain the network's decision?

Why did the classifier predict "car"?

Saliency "explanation"

Why did the classifier predict "car"? –correct but for wrong reasons!

Saliency "explanation"

Why did the classifier predict "cow" (incorrect)?

Prediction: "cow" 76%

Saliency "explanation"

Why did the classifier predict "cow" (incorrect)?

Prediction: "cow" 76%

Explanation for "cow"

MODEL BIAS:

most sheep are white, so model mistakes black sheep for cows

explainable AI

o explain prediction
o improve the model
o discover bias

Wrong

Baseline: A *man* sitting at a desk with a laptop computer.

Right for the Right Reasons

Our Model: A **woman** sitting in front of a laptop computer.

Burns, Hendricks, et. al, Women Also Snowboard: Overcoming Bias in Captioning Models, ECCV 2018

eXplainable Artificial Intelligence (XAI)

ostrich

Generate iconic images

volcano

car neuron

Interpretable models

are there any large matte blocks of the same color as the large metal ball ?

Simonyan et al. **Deep inside convolutional networks: Visualising image classification models and saliency maps.** ICLR Workshop 2014.

Nguyen et al. Plug & play generative networks: Conditional iterative generation of images in latent space. CVPR 2017

Bau et al. Network Dissection: Quantifying Interpretability of Deep Visual Representations. CVPR 2017

Hu et al. Explainable Neural Computation via Stack Neural Module Networks. ECCV 2018

Background: XAI via saliency detection

Image classification

Goldfish

Action recognition

Horse riding

Image captioning

Sentiment analysis

"Despite its flaws, this is still a fascinating story." "A horse and a carriage on a city street."

Background: White box vs. Black box

Black-box model

Sliding occlusion

LIME

RISE: randomly mask input, measure output

RISE: Randomized Input Sampling for Explanation of Black-box Models, Petsiuk, Das, Saenko, BMVC 2018

RISE: Qualitative Examples

(Petsiuk 2018) • What the network actually sees, not what a human sees: "high-fidelity" explanation

pixels important for prediction

Ours

GradCAM

LIME

RISE: Evaluation

Method	Resl	Net50	VGG16			
	Deletion	Insertion	Deletion	Insertion		
Grad-CAM [0.1232	0.6766	0.1087	0.6149		
Sliding window [0.1421	0.6618	0.1158	0.5917		
LIME [🛄]	0.1217	0.6940	0.1014	0.6167		
RISE (ours)	0.1076 ± 0.0005	0.7267 ± 0.0006	0.0980 ± 0.0025	0.6663 ± 0.0014		

Causal metrics on ImageNet dataset

RISE: Randomized Input Sampling for Explanation of Black-box Models, Petsiuk, Das, Saenko, BMVC 2018

Can we go beyond a single heatmap?

Q: There is a small gray block; are there any spheres to the left of it?

Neural modules learn a "program"

input: There is a small gray block; are there any spheres to the left of it?

input image

Hu, Andreas, Darrell, Saenko, Explainable Neural Computation via Stack Neural Module Networks, ECCV'18

Stack neural module networks (Hu et al. 2018)

Differentiable: replacing previous discrete execution graph with continuous soft layout (via module weights), not requiring "expert layout" supervision or RL.

Interpretable as humans can understand its reasoning steps and detect its failure.

Multi-task by sharing a common set of sub-tasks (modules).

Hu, Andreas, Darrell, Saenko, Explainable Neural Computation via Stack Neural Module Networks, ECCV'18

Interpretability evaluation of NMNs (Hu et al. 2018)

We let human users judge (from the image and text attentions) whether the internal computation is clear to them. **Our model is much more often rated as "clear"**.

question="There is a small gray block; are there any spheres to the left of it?"

percentage of each choice (clear, mostly clear, somewhat unclear and unclear)

Can we explain similarity?

Why are these similar?

Both outdoors? Both are animals? Household pets? Near/in a forest?

Why do these match?

Both are jewelry? Both gold? Both shiny or sparkly?

Prior work: explain classifier

This work: explain similarity model

Plummer

Desirable Qualities of Explanations

- Human interpretable
- Considers both images (i.e. changing one image affects the explanation of the other)
- Explains model behavior

Reference Image Query Image

Open

Elegant

Reference Image Query Image

ige Explanation

Furry

Ground

SANE: Attribute-based explanation model

Plummer 19

Saliency Map Performance

			Polyvore Outfits			Animals with Attributes 2		
Method	Fixed Refe	erence?	Insertion ((†) Delet	tion (\downarrow)	Insertion (\uparrow)	Deletion (\downarrow)	
Sliding Window	Y		60.2	5	3.6	76.9	76.8	
RISE	Y		62.0	5	2.0	76.5	77.1	
LIME	Y		58.4	5	5.4	77.0	71.2	
Mask	Y		59.4	5	3.3	74.5	77.3	
Re	ference Image C	Query Image	Sliding Window	RISE	LIME	Mask		
			-0-	0-				
		HILFIGER	HILFIGER	HILFIGER	HILFIGE			

Attribute "removal" metric

Input Image Attribute to Remove

Returned Image

measure drop in similarity

measure drop in similarity

Attribute "removal" evaluation

	Polyvore Outfits			Animals with Attributes 2		
		Top1	Attr		Top1	Attr
Method	mAP	Accuracy	Removal	mAP	Accuracy	Removal
Random	_	1.3	0.2	_	38.1	0.4
Attribute Classifier	24.2	49.1	0.5	66.5	73.9	0.9
FashionSearchNet [1]	24.5	49.1	0.4	66.7	75.2	1.1
FashionSearchNet + Map Matching	_	49.8	1.5	_	77.8	1.4
SANE	25.7	50.0	2.2	67.1	77.1	1.8
SANE + Map Matching	_	51.7	2.9	_	85.5	2.3
SANE + Map Matching + Prior (Full)	_	52.2	3.5	_	85.1	2.7

Summary

- A causal saliency explanation model (RISE)
- Naturally explainable modular networks
- Explaining a similarity model with attributes

Where to go next?

- need evaluation metrics for XAI
- disentangled representations

- Polyvore Outfits 365,054 images, 205 attributes
- Animals with Attributes 2 37,322 images, 50 animal classes, 85 attributes

